4.2 Article

A Synergy-Based Motor Control Framework for the Fast Feedback Control of Musculoskeletal Systems

出版社

ASME
DOI: 10.1115/1.4042185

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chairs program

向作者/读者索取更多资源

This paper presents a computational framework for the fast feedback control of musculoskeletal systems using muscle synergies. The proposed motor control framework has a hierarchical structure. A feedback controller at the higher level of hierarchy handles the trajectory planning and error compensation in the task space. This high-level task space controller only deals with the task-related kinematic variables, and thus is computationally efficient. The output of the task space controller is a force vector in the task space, which is fed to the low-level controller to be translated into muscle activity commands. Muscle synergies are employed to make this force-to-activation (F2A) mapping computationally efficient. The explicit relationship between the muscle synergies and task space forces allows for the fast estimation of muscle activations that result in the reference force. The synergy-enabled F2A mapping replaces a computationally heavy nonlinear optimization process by a vector decomposition problem that is solvable in real time. The estimation performance of the F2A mapping is evaluated by comparing the F2A-estimated muscle activities against the measured electromyography (EMG) data. The results show that the F2A algorithm can estimate the muscle activations using only the task-related kinematics/dynamics information with similar to 70% accuracy. An example predictive simulation is also presented, and the results show that this feedback motor control framework can control arbitrary movements of a three-dimensional (3D) musculoskeletal arm model quickly and near optimally. It is two orders-of-magnitude faster than the optimal controller, with only 12% increase in muscle activities compared to the optimal. The developed motor control model can be used for real-time near-optimal predictive control of musculoskeletal system dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据