4.6 Article

The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 293, 期 48, 页码 18514-18524

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA118.003812

关键词

-

资金

  1. National Institutes of Health [GM101377]
  2. Virginia and L. E. Simmons Family Foundation
  3. Hamill Foundation

向作者/读者索取更多资源

The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature. The GTPase atlastin is required for homotypic fusion of ER tubules. All atlastin homologs possess a conserved domain architecture consisting of a GTPase domain, a three-helix bundle middle domain, a hydrophobic membrane anchor, and a C-terminal cytosolic tail. Here, we examined several Drosophila-human atlastin chimeras to identify functional domains of human atlastin-1 in vitro. Although all chimeras could hydrolyze GTP, only chimeras containing the human C-terminal tail, hydrophobic segments, or both could fuse membranes in vitro. We also determined that co-reconstitution of atlastin with reticulon does not influence GTPase activity or membrane fusion. Finally, we found that both human and Drosophila atlastin hydrophobic membrane anchors do not span the membrane, but rather form two intramembrane hairpin loops. The topology of these hairpins remains static during membrane fusion and does not appear to play an active role in lipid mixing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据