4.4 Article

Pyrimidine Biosynthesis Regulates the Small-Colony Variant and Mucoidy in Pseudomonas aeruginosa through Sigma Factor Competition

期刊

JOURNAL OF BACTERIOLOGY
卷 201, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00575-18

关键词

AlgU (AlgT); alginate; cystic fibrosis (CF); mucoidy; Pseudomonas aeruginosa; RpoN; sigma factor competition; small-colony variant (SCV)

资金

  1. National Institutes of Health (NIH) [P20GM103434, 1R43GM113545-01A1]

向作者/读者索取更多资源

Mucoidy due to alginate overproduction by the Gram-negative bacterium Pseudomonas aeruginosa facilitates chronic lung infections in patients with cystic fibrosis (CF). We previously reported that disruption in de novo synthesis of pyrimidines resulted in conversion to a nonmucoid small-colony variant (SCV) in the mucoid P. aeruginosa strain (PAO581), which has a truncated anti-sigma factor, MucA25, that cannot sequester sigma factor AlgU (AlgT). Here, we showed that supplementation with the nitrogenous bases uracil or cytosine in growth medium complemented the SCV to normal growth, and nonmucoidy to mucoidy, in these mucA25 mutants. This conversion was associated with an increase in intracellular levels of UMP and UTP suggesting that nucleotide restoration occurred via a salvage pathway. In addition, supplemented pyrimidines caused an increase in activity of the alginate biosynthesis promoter (P-algD), but had no effect on P-algU, which controls transcription of algU. Cytosolic levels of AlgU were not influenced by uracil supplementation, yet levels of RpoN, a sigma factor that regulates nitrogen metabolism, increased with disruption of pyrimidine synthesis and decreased after supplementation of uracil. This suggested that an elevated level of RpoN in SCV may block alginate biosynthesis. To support this, we observed that overexpressing rpoN resulted in a phenotypic switch to nonmucoidy in PAO581 and in mucoid clinical isolates. Further-more, transcription of an RpoN-regulated promoter increased in the mutants and decreased after uracil supplementation. These results suggest that the balance of RpoN and AlgU levels may regulate growth from SCV to mucoidy through sigma factor competition for P-algD. IMPORTANCE Chronic lung infections with P. aeruginosa are the main cause of morbidity and mortality in patients with cystic fibrosis. This bacterium overproduces a capsular polysaccharide called alginate (also known as mucoidy), which aids in bacterial persistence in the lungs and in resistance to therapeutic regimens and host immune responses. The current study explores a previously unknown link between pyrimidine biosynthesis and mucoidy at the level of transcriptional regulation. Identifying/characterizing this link could provide novel targets for the control of bacterial growth and mucoidy. Inhibiting mucoidy may improve antimicrobial efficacy and facilitate host defenses to clear the noncapsulated P. aeruginosa bacteria, leading to improved prognosis for patients with cystic fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据