4.3 Article

On the Spatial Scales to be Resolved by the Surface Water and Ocean Topography Ka-Band Radar Interferometer

期刊

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JTECH-D-18-0119.1

关键词

-

资金

  1. National Aeronautics and Space Administration
  2. SWOT mission
  3. NASA [NNX16AH66G, NNX17AH33G]
  4. NASA Physical Oceanography (PO) Program
  5. NASA Modeling, Analysis, and Prediction (MAP) Program

向作者/读者索取更多资源

The Surface Water and Ocean Topography (SWOT) mission aims to measure the sea surface height (SSH) at a high spatial resolution using a Ka-band radar interferometer (KaRIn). The primary oceanographic objective is to characterize the ocean eddies at a spatial resolution of 15 km for 68% of the ocean surface. This resolution is derived from the ratio between the wavenumber spectrum of the conventional altimeter (projected to submesoscale) and the SWOT SSH errors. While the 15-km threshold is useful as a global approximation of the spatial scales resolved by SWOT (SWOT scale), it can be misleading for regional studies. Here we revisit the problem using a high-resolution (similar to 2-km horizontal grid spacing) tide-resolving global ocean simulation and map the SWOT scale as a function of location and season. The results show that the SWOT scale increases, in general, from about 15 km at low latitudes to similar to 30-45 km at mid-and high latitudes but with a large geographical dependence. A SWOT scale smaller than 30 km is expected in the high-latitude energetic regions. The SWOT scale varies seasonally as a result of the seasonality in both the noise and ocean signals. The seasonality also has a geographical dependence. Both eddies and internal gravity waves/tides contribute significantly to the SWOT scale variation. Our analysis provides model predictions for interpreting the anticipated observations from SWOT and guidance for the development of analysis methodologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据