4.5 Article

Deployment of a Membrane Attached to Two Axially Moving Beams

出版社

ASME
DOI: 10.1115/1.4042134

关键词

-

资金

  1. Ontario Graduate Scholarship (OGS) program
  2. Province of Ontario
  3. University of Toronto

向作者/读者索取更多资源

The deployment dynamics of a simplified solar sail quadrant consisting of two Euler-Bernoulli beams and a flexible membrane are studied. Upon prescribing the in-plane motion and modeling the tension field based on linearly increasing stresses assumed on the attached boundaries, the coupled equations of motion that describe the system's transverse deflections are obtained. Based on these equations and their boundary conditions (BCs), deployment stability is studied by deriving simplified analytic expressions for the rate of change of system energy. It is shown that uniform extension and retraction result in decreasing and increasing energy, respectively. The motion equations are discretized using expansions in terms of time-varying quasi-modes (snapshots of the modes of a cantilevered beam and a clamped membrane), and the integrals needed for the resulting system matrices are rendered time-invariant via a coordinate transformation. Numerical simulation results are provided to illustrate a sample deployment and validate the analytic energy rate expressions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据