4.7 Article

Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 770, 期 -, 页码 995-1003

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.08.197

关键词

Ferritic and austenitic alloys; Laser additive manufacturing; Diffusion; Functionally graded materials; Dissimilar metal joints

资金

  1. Department of Energy Nuclear Energy University Program [DE-NE0008280]

向作者/读者索取更多资源

Dissimilar metal joints between ferritic and austenitic alloys are susceptible to premature failure due to diffusive carbon loss from the ferritic alloy driven by abrupt changes in carbon chemical potential. Compositional grading of transition joints fabricated using laser-based directed energy deposition additive manufacturing offers a means for limiting carbon diffusion. Here we fabricate functionally graded transition joints between a ferritic and austenitic alloy, characterize spatial variations of chemical composition, microstructure and hardness, and test their effectiveness to limit carbon loss from the ferritic alloy. Microstructural studies and carbon potential variations in the functionally graded material showed that the length of the joints can be shorter, and there is no benefit to continue compositional grading once the microstructure becomes fully austenitic. Since dissimilar joints have an expected lifetime of several decades, long service times were simulated through accelerated heat treatment experiments at elevated temperatures for both a dissimilar metal weld and a functionally graded transition joint. While the dissimilar weld showed pronounced carbon loss from the ferritic side, there was insignificant change in the carbon concentration profile in the functionally graded joint indicating effectiveness of the graded joints to perform under service conditions. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据