4.4 Article

Long-Range Communication Network in the Type 1B Bone Morphogenetic Protein Receptor

期刊

BIOCHEMISTRY
卷 54, 期 48, 页码 7079-7088

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.5b00955

关键词

-

资金

  1. University of Texas Health Science Center at San Antonio (UTHSCSA) Center for Macromolecular Interactions (CMMI)
  2. Cancer Therapy and Research Center through National Institutes of Health-National Cancer Institute P30 [CA054174]
  3. Texas State funds through Office of the Vice President for Research of the UTHSCSA
  4. National Institutes of Health Grant [GM 77551]
  5. Robert A. Welch Foundation [H-0013]

向作者/读者索取更多资源

Protein protein interactions are recognized as a fundamental phenomenon that is intimately associated with biological functions and thus are ideal targets for developing modulators for regulating biological functions. A challenge is to identify a site that is situated away from but functionally connected to the protein protein interface. We employed bone motphogenetic proteins (BMPs) and their receptors as a model system to develop a strategy for identifying such a network of communication. Accordingly, using computational analyses with the COREX/BEST algorithm, we uncovered an overall pattern connecting various regions of BMPR-1B ectodomain, including the four conserved residues in the protein protein interface. In preparation for testing the long-range effects of mutations of distal residues for future studies, we examined the extent of measurable perturbation of the four conserved residues by determination of the conformation and relative affinities of these BMPR-1B mutants for ligands BMP-2, -6, and -7 and GDF-5. Results suggest no significant structural changes in the receptor but do suggest that the four residues play different roles in defining ligand affinity and both intra- and intermolecular interactions play a role in defining ligand affinity. Thus, these results established two primary but necessary goals: (1) the baseline knowledge of perturbation of conserved interfacial residues for future reference and (2) the ability of the computational approach to identify the distal residues connecting to the interfacial residues. The data presented here provide the foundation for future experiments to identify the effects of distal residues that affect the specificity and affinity of BMP recognition. Protein protein interactions are integral reactions in essentially all biological activities such as gene regulation and age-related development. Often, diseases are consequences of the alteration of these intermacromolecular interactions, which are thus recognized as a legitimate target for developing modulators for regulating biological functions. One approach is to design ligands that bind to the protein protein interface. Another is to identify an allosteric site, an advantage of which is bypassing the potential challenge in competing for high-affinity interfacial interactions or a specific interface in a superassembly of multiple macromolecules. However, a challenge of this approach is identifying a site that is situated away from but functionally connected to the protein protein interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据