4.4 Article

Transition State Charge Stabilization and Acid Base Catalysis of mRNA Cleavage by the Endoribonuclease ReIE

期刊

BIOCHEMISTRY
卷 54, 期 47, 页码 7048-7057

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.5b00866

关键词

-

资金

  1. National Institute of General Medical Sciences [GM054839]

向作者/读者索取更多资源

The bacterial toxin RelE is a ribosome-dependent endoribonuclease. It is part of a type II toxin-antitoxin system that contributes to antibiotic resistance and biofilm formation. During amino acid starvation, RelE cleaves mRNA in the ribosomal A-site, globally inhibiting protein translation. RelE is structurally similar to microbial RNases that employ general acid-base catalysis to facilitate RNA cleavage. The RelE active site is atypical for acid-base catalysis, in that it is enriched with positively charged residues and lacks the prototypical histidine-glutamate catalytic pair, making the mechanism of mRNA cleavage unclear. In this study, we use a single-turnover kinetic analysis to measure the effect of pH and phosphorothioate substitution on the rate constant for cleavage of mRNA by wild-type RelE and seven active-site mutants. Mutation and thio effects indicate a major role for stabilization of increased negative change in the transition state by arginine 61. The wild-type RelE cleavage rate constant is pH-independent, but the reaction catalyzed by many of the mutants is strongly dependent on pH, suggestive of general acidbase catalysis. pH-rate curves indicate that wild-type RelE operates with the pK(a) of at least one catalytic residue significantly downshifted by the local environment. Mutation of any single active-site residue is sufficient to disrupt this microenvironment and revert the shifted pKa back above neutrality. pH-rate curves are consistent with K54 functioning as a general base and R81 as a general acid. The capacity of RelE to effect a large pKa shift and facilitate a common catalytic mechanism by uncommon means furthers our understanding of other atypical enzymatic active sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据