4.7 Article

Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat

期刊

出版社

MDPI
DOI: 10.3390/ijms19103237

关键词

Triticum durum; Aegilops tauschii; Triticum aestivum; marker-trait associations; genes; bread wheat; genetic biofortification; favorable alleles

资金

  1. Monsanto Beachell-Borlaug International Scholarship Program
  2. CRP WHEAT
  3. Ministry of Food, Agriculture and Livestock of Turkey
  4. Bill and Melinda Gates Foundation
  5. UK Department for International Development [OPP1133199]
  6. Russian Science Foundation [16-16-10005]
  7. Hatch project [NEB-22-328, AFRI/2011-68002-30029]
  8. USDA National Institute of Food and Agriculture, International Wheat Yield Partnership [2017-67007-25939]
  9. CERES Trust Organic Research Initiative
  10. USDA [59-0790-4-092]
  11. U.S. Wheat and Barley Scab Initiative
  12. Russian Science Foundation [16-16-10005] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Synthetic hexaploid wheat (SHW; Triticum durum L. x Aegilopstauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据