4.7 Article

Porous nickel-iron alloys as anode support for intermediate temperature solid oxide fuel cells: II. Cell performance and stability

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 45, 页码 21030-21036

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.09.142

关键词

Metal-supported solid oxide fuel cell; Porous nickel-iron alloy; Magnesium oxide; Redox cycle; Thermal cycle; Stability

资金

  1. National Natural Science Foundation of China [51702108, 51672095, 51702109, U1601207]
  2. International S&T Cooperation Program of China [2016YFE0126900]

向作者/读者索取更多资源

Porous nickel iron alloy supported solid oxide fuel cells (SOFCs) are fabricated through cost-effective ceramic process including tape casting, screen printing and co-sintering. The cell performance is characterized with humidified hydrogen as the fuel and flowing air as the oxidant. Effects of iron content on the cell performance and stability under redox and thermal cycle are investigated from the point of view of structural stability. Single cells supported by nickel and nickel iron alloy (50 wt % iron) present relatively high discharge performance, and the maximum power density measured at 800 degrees C is 1.52 and 1.30 W cm(-2) respectively. Nickel supported SOFC shows better thermal stability between 200 and 750 degrees C due to its dimensional stable substrate under thermal cycles. Posttest analysis shows that a dense iron oxide layer formed on the surface of the nickel-iron alloy during the early stage of oxidation, which prevents the further oxidation of the substrate as well as the functional anode layer, and thus, making nickel-iron supported SOFC exhibits better redox stability at 750 degrees C. Adding 0.5 wt % magnesium oxide into the nickel-iron alloy (50 wt% iron) can inhibit the metal sintering and reduce the linear shrinkage, making the single cell exhibit promising thermal stability. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据