4.5 Article

Characterization of microbial functional and genetic diversity as a novel strategy of biowaste ecotoxicological evaluation

出版社

SPRINGER
DOI: 10.1007/s13762-018-2066-3

关键词

Community genomics and bolomics; Biowaste; Residues; Exogenous organic matter; Biogas; Biolog((R)) plates; NGS; DGGE

资金

  1. National Centre for Research and Development in Poland [LIDER 048/L-2/10]

向作者/读者索取更多资源

The goal was to elucidate the importance of the waste properties for effective exploitation in biogas production and for soil application, respectively, based on the physicochemical and microbial characterization of biowaste and the corresponding biogas residues. The following waste media were chosen: fruit waste, dairy sewage sludge, corn silage, grass silage, and grain brew to prepare three co-substrates for anaerobic bioconversion. The most satisfactory biogas yield was obtained from biowaste with the following composition: 25% fruit wastes, 25% dairy sewage sludge, 12% corn silage, and 38% grain brew. The study included functional and genetic diversity assessment through the characterization of the catabolic potential and structure of the microbial communities inhabiting the examined organic wastes and their relative biogas residues. The metabolome was based on the use of a Biolog((R)) plate. The elucidation of the metagenome employed the genetic structure of prokaryotes and involved denaturing gradient gel electrophoresis and next-generation sequencing analyses. The usefulness of metagenomics was emphasized by ecotoxicological evaluation of biowaste and in determining the accurate start-up community composition for biogas production, highlighting the pivotal role of anammox and hydrolytic bacteria as marker groups. The high importance of the great diversity of fungi was also revealed based on a functional approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据