4.7 Article

Heat and mass transfer in a unitized regenerative fuel cell during mode switching

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 43, 期 7, 页码 2678-2693

出版社

WILEY
DOI: 10.1002/er.4319

关键词

heat transfer; mass transfer; mode switching; proton exchange membrane; unitized regenerative fuel cells

资金

  1. National Natural Science Foundation of China [51476003]

向作者/读者索取更多资源

With the occurrence of reversible electrochemical reactions, mode switching considerably affects the electric performance of unitized regenerative fuel cells (URFCs) owing to the complicated mass and heat transfer. Although limited researches have been done, no such studies on mass and heat transfer through a three-dimensional view are envisioned during mode switching. A three-dimensional full-cell model was developed and validated to study the dynamic characteristics of a proton exchange membrane-based URFC during mode switching. Mode switching was performed by changing operation voltage from 0.60 to 1.65 V. Results showed that species and heat transfer affect the electric performance of the cell during mode switching, especially through the third dimensional. Local water starvation occurs on oxygen side catalyst layer and thus results in slight reduction on current density and hydrogen generation. Restricted to heat transfer capacity through ribs, heat transfer process adds total response time in URFCs. Heat flux and surface heat transfer coefficient are forecasted on the hydrogen and oxygen sides. A total time of 4 seconds is essential for URFC reaching a new relative balanced state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据