4.6 Article

Effects of tool path in remanufacturing cylindrical components by laser metal deposition

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-018-2786-z

关键词

Laser metal deposition; Repair; Tool path; Coating; Cylindrical parts

资金

  1. National Science Foundation [CMMI-1547042, CMMI 1625736]
  2. Intelligent Systems Center, Center for Aerospace Manufacturing Technologies, and Material Research Center at Missouri ST

向作者/读者索取更多资源

Laser metal deposition as an additive manufacturing process has been widely utilized for component repair. In this study, in order to investigate the influence of tool path on characteristics of coatings for cylindrical part repair, multi-layer cobalt-based alloy was coated on cylindrical tool steel substrates using the blown powder laser metal deposition process following the helix (H), circle-line-circle (CLC), and line-arc-line (LAL) routes. A series of analysis was performed on the coatings including shape's profile, powder-catch efficiency, microstructure, EDS, XRD, and Vickers hardness. The result shows coatings fabricated using the H and CLC routes have consistent thickness while more material was deposited near the middle for the LAL route. Powder-catch efficiency for the CLC and LAL paths was up to 28% while it was only 14% for the H route. The microstructure near the coating's starting point was columnar dendrites growing parallel to the heat flux direction. Cooling speed reduced after several layers' coating and equiaxed-like morphology appeared. Much gas porosity was discovered near the interface for LAL-coated samples. EDS and XRD analysis show Fe was diffused into the coatings. Microhardness measurement reveals that the hardness of LAL fabricated samples was slightly higher than the hardness of H and CLC samples. The result shows that the CLC path is more suitable for repairing/coating cylindrical components due to a relatively consistent shape, a high powder-catch efficiency, and defect-free deposits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据