4.4 Article

A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses

出版社

WILEY
DOI: 10.1002/cnm.3162

关键词

bilateral pedicle screw fixation; breakage; finite element; lumbar interbody fusion; static and vibration analyses

资金

  1. National Natural Science Foundation of China [51275082, 51875096]
  2. Fundamental Research Funds for the Central Universities [N172410002-04]

向作者/读者索取更多资源

This study aimed to examine breakage risk of the bilateral pedicle screw (BPS) fixation system under static and vibration loadings after three different types of lumbar interbody fusion surgery. A previously validated intact L1-sacrum finite element model was modified to simulate anterior, posterior, and transforaminal lumbar interbody fusion (ALIF, PLIF, and TLIF, respectively) with BPS fixation system (consisting of pedicle screws and rigid connecting rods) at L4-L5. As a risk parameter for breakage, the von Mises stresses in the pedicle screws and the rods for the ALIF, PLIF, and TLIF models under static loading (flexion, extension, lateral bending, and axial torsion moments) and vibration loading (sinusoidal vertical load) were calculated and compared. The calculated von Mises stresses were different in the ALIF, PLIF, and TLIF models, but these stresses for all the fusion models were found to be concentrated in neck of the pedicle screw and middle of the rod under both the static and vibration loadings. The results from static analyses showed that the maximum stress in the BPS fixation system was greater in the TLIF model than in the ALIF and PLIF models under all the applied static loadings. The results from transient dynamic analyses also showed that the TLIF generated greater dynamic responses of the stress in the BPS fixation system to the vertical vibration compared with the ALIF and PLIF. It implies that the TLIF procedure might incur a higher risk of breakage for the BPS fixation system than the ALIF and PLIF procedures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据