4.6 Article

Modified predictor-corrector solution approach for efficient discontinuous deformation analysis of jointed rock masses

出版社

WILEY
DOI: 10.1002/nag.2881

关键词

computational efficiency; discontinuous deformation analysis; jointed rock masses; modified predictor-corrector approach

资金

  1. Hong Kong Polytechnic University [1-ZVJW]
  2. Hubei Provincial Natural Science Foundation of China [2016CFA023]
  3. National Natural Science Foundation of China [11672360, 41731284, 51479191]

向作者/读者索取更多资源

The high computational costs associated with the implicit formulation of discontinuous deformation analysis (DDA) have been one of the major obstacles for its implementation to engineering problems involving jointed rock masses with large numbers of blocks. In this paper, the Newmark-based predictor-corrector solution (NPC) approach was modified to improve the performance of the original DDA solution module in modeling discontinuous problems. The equation of motion for a discrete block system is first established with emphasis on the consideration of contact constraints. A family of modified Newmark-based predictor-corrector integration (MNPC) scheme is then proposed and implemented into a unified analysis framework. Comparisons are made between the proposed approach and the widely used constant acceleration (CA) integration approach and central difference (CD) approach, regarding the stability and numerical damping features for a single-degree-of-freedom model, where the implications of the proposed approach on open-close iteration are also discussed. The validity of the proposed approach is verified by several benchmarking examples, and it is then applied to two typical problems with different numbers of blocks. The results show that the original CA approach in DDA is efficient for the simulation of quasi-static deformation of jointed rock masses, while the proposed MNPC approach leads to improved computational efficiency for dynamic analysis of large-scale jointed rock masses. The MNPC approach therefore provides an additional option for efficient DDA of jointed rock masses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据