4.6 Article

The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila

期刊

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
卷 106, 期 -, 页码 10-18

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ibmb.2019.01.001

关键词

Neofunctionalization; Structural evolution; Juvenile hormone esterase; Odorant degrading enzyme

资金

  1. Australian Research Council [FT140101059]
  2. Australian Science and Industry Endowment Fund [PF14-099]
  3. Australian Government Research Training Program Scholarship
  4. Australian Research Council [FT140101059] Funding Source: Australian Research Council

向作者/读者索取更多资源

The Drosophila melanogaster enzymes juvenile hormone esterase (DmJHE) and its duplicate, DmJHEdup, present ideal examples for studying the structural changes involved in the neofunctionalization of enzyme duplicates. DmJHE is a hormone esterase with precise regulation and highly specific activity for its substrate, juvenile hormone. DmJHEdup is an odorant degrading esterase (ODE) responsible for processing various kairomones in antennae. Our phylogenetic analysis shows that the JHE lineage predates the hemi/holometabolan split and that several duplications of JHEs have been templates for the evolution of secreted beta-esterases such as ODEs through the course of insect evolution. Our biochemical comparisons further show that DmJHE has sufficient substrate promiscuity and activity against odorant esters for a duplicate to evolve a general ODE function against a range of mid-long chain food esters, as is shown in DmJHEdup. This substrate range complements that of the only other general ODE known in this species, Esterase 6. Homology models of DmJHE and DmJHEdup enabled comparisons between each enzyme and the known structures of a lepidopteran JHE and Esterase 6. Both JHEs showed very similar active sites despite low sequence identity (30%). Both ODEs differed drastically from the JHEs and each other, explaining their complementary substrate ranges. A small number of amino acid changes are identified that may have been involved in the early stages of the neofunctionalization of DmJHEdup. Our results provide key insights into the process of neofunctionalization and the structural changes that can be involved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据