4.7 Article

Thermal Evolution of ZnS Nanostructures: Effect of Oxidation Phenomena on Structural Features and Photocatalytical Performances

期刊

INORGANIC CHEMISTRY
卷 57, 期 21, 页码 13104-13114

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b01101

关键词

-

资金

  1. DFG [2204, MA 5392/3-1]
  2. Justus-Liebig Universitat Giessen

向作者/读者索取更多资源

ZnS nanosystems are being extensively studied for their possible use in a wide range of technological applications. Recently, the gradual oxidation of ZnS to ZnO was exploited to tune their structural, electronic, and functional properties. However, the inherent complexity and size dependence of the ZnS oxidation phenomena resulted in a very fragmented description of the process. In this work, different sized nanosystems were obtained through two different low temperature wet chemistry routes, namely, hydrothermal and inverse miniemulsion approaches. These protocols were used to obtain ZnS samples consisting of 21 and 7 nm crystallites, respectively, to be used as reference material. The obtained samples were then calcinated at different temperatures, ranging from 400 to 800 degrees C toward the complete oxidation of ZnO, passing through the coexistence of the two phases (ZnS/ZnO). A thorough comparison of the effects of thermal handling on ZnS structural, chemical, and functional evolution was carried out by TEM, XRD, XAS, XPS, Raman, FT-IR, and UV-Vis. Finally, the photocatalytic activity in the H-2 evolution reaction was also compared for selected ZnS and ZnS/ZnO samples. A correlation between size and the oxidation process was observed, as the smaller nanosystems showed the formation of ZnO at lower temperature, or in a larger amount in the case of the ZnS and ZnO co-presence. A difference in the underlying mechanism of the reaction was also evidenced. Despite the ZnS/ZnO mixed samples being characterized by an increased light absorption in the visible range, their photocatalytic activity was found to be much lower.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据