4.7 Article

Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase

期刊

AGRONOMY-BASEL
卷 5, 期 2, 页码 107-129

出版社

MDPI
DOI: 10.3390/agronomy5020107

关键词

barley; leaf area; leaf growth rate; Vrs1; two-rowed; six-rowed

资金

  1. DFG (Deutsche Forschungs Gemeinschaft) [SCHN 768/4-1]
  2. BMBF (German Federal Ministry of Education and Research) GABI-FUTURE Start Program [0315071]

向作者/读者索取更多资源

Leaf developmental traits are an important component of crop breeding in small-grain cereals. Surprisingly, little is known about the genetic basis for the differences in barley (Hordeum vulgare L.) leaf development. The two barley row-type classes, i.e., two- and six-rowed, show clear-cut differences in leaf development. To quantify these differences and to measure the genetic component of the phenotypic variance for the leaf developmental differences in both row-type classes we investigated 32 representative spring barley accessions (14 two- and 18 six-rowed accessions) under three independent growth conditions. Leaf mass area is lower in plants grown under greenhouse (GH) conditions due to fewer, smaller, and lighter leaf blades per main culm compared to pot- and soil-grown field plants. Larger and heavier leaf blades of six-rowed barley correlate with higher main culm spike grain yield, spike dry weight, and harvest index; however, smaller leaf area (LA) in two-rowed barley can be attributed to more spikes, tillers, and biological yield (aboveground parts). In general, leaf growth rate was significantly higher between awn primordium and tipping stages. Moderate to very high broad-sense heritabilities (0.67-0.90) were found under all growth conditions, indicating that these traits are predominantly genetically controlled. In addition, our data suggests that GH conditions are suitable for studying leaf developmental traits. Our results also demonstrated that LA impacts single plant yield and can be reconsidered in future breeding programs. Six-rowed spike 1 (Vrs1) is the major determinate of barley row-types, the differences in leaf development between two- and six-rowed barleys may be attributed to the regulation of Vrs1 in these two classes, which needs further testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据