4.6 Article

Molecular Simulation Study of Montmorillonite in Contact with Water

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 58, 期 3, 页码 1396-1403

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.8b05125

关键词

-

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

Grand canonical Monte Carlo and molecular dynamics simulations were applied to understand the molecular mechanism of ion and water transport in montmorillonite clays as a function of relative humidity (RH). The variation of basal spacings of montmorillonite as a function of RH predicted based on the swelling free energy profiles was consistent with X-ray data. The hydration of the montmorillonite shows the following well-known order: Mg2+ > Ca2+ > Sr2+ > Li+ > Na+ > K+. The relative contribution of water on external surfaces only becomes significant close to the saturation pressure. However, this behavior for K-montmorillonite starts to occur well below the saturation pressure due to the clay-swelling inhibition by potassium ions. The diffusion of water and ions generally increases with RH in all samples. However, for samples with weakly hydrated ions, the water mobility in thin films adsorbed on external basal surfaces of clay can be higher, than that in the water-saturated mesopores. For a given RH, mobility of interlayer species is typically lower than that from the external surfaces. The results of the simulations were applied to interpret recent laboratory measurements of ion mobility with changing RH. We also assess the effect of layer charge distribution on such sorption and diffusion processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据