4.6 Article

Effect of Carbon Doping on Charging/Discharging Dynamics and Leakage Behavior of Carbon-Doped GaN

期刊

IEEE TRANSACTIONS ON ELECTRON DEVICES
卷 65, 期 12, 页码 5314-5321

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2018.2872552

关键词

Carbon concentration; carbon-doped GaN; carrier capture and emission; carrier transport; defect band (DB); dislocation density; trapping

资金

  1. Austrian Research Promotion Agency through FFG Project [863947]

向作者/读者索取更多资源

Capacitance transient spectroscopy and dc current-voltage (I-V) characterization are employed to analyze charging/discharging effects and transport in 200-nm-thin carbon-doped GaN layers (GaN:C) with a low (N-C = 10(18) cm(-3)) and high (N-C = 10(19) or N-C = 7 x 10(19) cm(-3)) carbon concentration N-C. The discharging and charging events are found to be governed by transport properties of GaN:C for whole N-C range. However, distinct temperature behavior has been found as a function of N-C. In the samples with low N-C, an Arrhenius-like behavior with an activation energy of 0.8 eV indicates that the hole transport in valence band (VB) is the limiting process and the carrier exchange occurs between VB and the defect level. In contrast, in samples with high N-C, a non-Arrhenius charging/discharging behavior with exp(aT)-dependence (a being a constant) in a wide temperature range (150-560 K) indicates that the transport is governed by defect bands (DBs) where the carrier exchange occurs between DBs and the carbon defect level. For samples with N-C >= 1019 cm(-3), the large charge accumulation in GaN:C produces a large energy barrier to prevent electron injection from n-GaN to GaN:C, thus making GaN:C blocking. This is in contrast to samples with N-C = 1018 cm(-3) where the barrier is low, rendering thus the bilayer leaky. Detailed physical models for carrier capture and emission processes and carrier transport are provided for both cases. The developed knowledge is important for understanding the role of growth parameters such as NC and dislocation densities, as well as for reliability testing and defect analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据