4.7 Article

Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections

期刊

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
卷 66, 期 12, 页码 7315-7327

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2018.2874430

关键词

Array imperfection; deep neural network (DNN); direction-of-arrival (DOA) estimation; multitask autoencoder; one-versus-all classification; supervised learning

资金

  1. National Science Foundation of China [61771477]

向作者/读者索取更多资源

Lacking of adaptation to various array imperfections is an open problem for most high-precision direction-of-arrival (DOA) estimation methods. Machine learning-based methods are data-driven, they do not rely on prior assumptions about array geometries, and are expected to adapt better to array imperfections when compared with model-based counterparts. This paper introduces a framework of the deep neural network to address the DOA estimation problem, so as to obtain good adaptation to array imperfections and enhanced generalization to unseen scenarios. The framework consists of a multitask autoencoder and a series of parallel multilayer classifiers. The autoencoder acts like a group of spatial filters, it decomposes the input into multiple components in different spatial subregions. These components thus have more concentrated distributions than the original input, which helps to reduce the burden of generalization for subsequent DOA estimation classifiers. The classifiers follow a one-versus-all classification guideline to determine if there are signal components near preseted directional grids, and the classification results are concatenated to reconstruct a spatial spectrum and estimate signal directions. Simulations are carried out to show that the proposed method performs satisfyingly in both generalization and imperfection adaptation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据