4.4 Article

Effect of the flame-retardant 3-hydroxyphenylphosphinyl-propanoic acid on the mechanical, thermal, and flammability properties of poly(ethylene terephthalate) nanofiber mats

期刊

HIGH PERFORMANCE POLYMERS
卷 31, 期 8, 页码 919-927

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954008318805530

关键词

Thermal properties; nanofiber mats; poly(ethylene terephthalate); flame retardant; mechanical properties

向作者/读者索取更多资源

The structure, thermal stability, and mechanical properties of electrospun nanofiber mats obtained from poly(ethylene terephthalate) (PET) solutions in trifluoroacetic acid/dichloromethane were evaluated. The electrospun PET nanofibers were characterized by means of attenuated total reflection Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, limiting oxygen index, and tensile testing. PET-3-hydroxyphenylphosphinyl-propanoic acid (HPP) copolymer was used as the flame-retardant (FR) agent to improve the thermal stability and flammability of the nanofiber mats. HPP is a commercial FR for polyesters which was studied from the viewpoint of chemical reactivity and reaction mechanism. To enhance the tensile strength of the nanofiber mats, the nanofibers were collected on high-speed rotating drum. The results showed that the nanofibers were oriented, and their strength was enhanced by increasing the velocity of the collector. The average diameter of electrospun nanofibers was in the range of 110-240 nm, decreasing with the increasing drum speed. Also the mean pore size of the mats decreased significantly with increasing orientation of the nanofibers. The results showed that HPP improved the flame retardancy of PET.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据