4.6 Article

PhaseNet: a deep-neural-network-based seismic arrival-time picking method

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 216, 期 1, 页码 261-273

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggy423

关键词

Neural networks; fuzzy logic; Time-series analysis; Body waves; Computational seismology; Earthquake monitoring and test-ban treaty verification

资金

  1. National Science Foundation (NSF) [EAR-1818579]

向作者/读者索取更多资源

As the number of seismic sensors grows, it is becoming increasingly difficult for analysts to pick seismic phases manually and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of improvements in automatic phase picking, it is difficult to match the performance of experienced analysts. A more subtle issue is that different seismic analysts may pick phases differently, which can introduce bias into earthquake locations. We present a deep-neural-network-based arrival-time picking method called PhaseNet that picks the arrival times of both P and S waves. Deep neural networks have recently made rapid progress in feature learning, and with sufficient training, have achieved super-human performance in many applications. PhaseNet uses three-component seismic waveforms as input and generates probability distributions of P arrivals, S arrivals and noise as output. We engineer PhaseNet such that peaks in the probability distributions provide accurate arrival times for both P and S waves. PhaseNet is trained on the prodigious available data set provided by analyst-labelled P and S arrival times from the Northern California Earthquake Data Center. The data set we use contains more than 700 000 waveform samples extracted from over 30 yr of earthquake recordings. We demonstrate that PhaseNet achieves much higher picking accuracy and recall rate than existing methods when applied to the waveforms of known earthquakes, which has the potential to increase the number of S-wave observations dramatically over what is currently available. This will enable both improved locations and improved shear wave velocity models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据