4.7 Article

Glacier meltwater and monsoon precipitation drive Upper Ganges Basin dissolved organic matter composition

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 244, 期 -, 页码 216-228

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2018.10.012

关键词

Dissolved organic matter; Eco-hydrology; Glaciers; Himalaya; Monsoon

资金

  1. NSF Graduate Research Fellowship Program [2012126152]
  2. MIT Houghten Fund
  3. NHMFL
  4. [NSF-DEB-1145932]

向作者/读者索取更多资源

Mountain glaciers store dissolved organic carbon (DOC) that can be exported to river networks and subsequently respired to CO2. Despite this potential importance within the global carbon cycle, the seasonal variability and downstream transport of glacier-derived DOC in mountainous river basins remains largely unknown. To provide novel insight, here we present DOC concentrations and molecular-level dissolved organic matter (DOM) compositions from 22 nested, glaciated catchments (1.481.8% glacier cover by area) in the Upper Ganges Basin, Western Himalaya over the course of the Indian summer monsoon (ISM) in 2014. Aliphatic and peptide-like compounds were abundant in glaciated headwaters but were overprinted by soilderived phenolic, polyphenolic and condensed aromatic material as DOC concentrations increase moving downstream. Across the basin, DOC concentrations and soil-derived compound class contributions decreased sharply from pre-to post-ISM, implying increased relative contribution of glaciated headwater signals as the monsoon progresses. Incubation experiments further revealed a strong compositional control on the fraction of bioavailable DOC (BDOC), with glacier-derived DOC exhibiting the highest bioavailability. We hypothesize that short-term (i.e. in the coming decades) increases in glacier melt flux driven by climate change will further bias exported DOM toward an aliphatic-rich, bioavailable signal, especially during the ISM and post-ISM seasons. In contrast, eventual decreases in glacier melt flux due to mass loss will likely lead to more a soil-like DOM composition and lower bioavailability of exported DOC in the long term. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据