4.7 Article

Using deuterium excess, precipitation and runoff data to determine evaporation and transpiration: A case study from the Shawan Test Site, Puding, Guizhou, China

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 242, 期 -, 页码 21-33

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2018.08.049

关键词

Deuterium excess; Stable water isotopes; Land use type; Plant transpiration; Watershed evaporation; Water cycle

资金

  1. National Natural Science Foundation of China [U1612441, 41430753, 41673136]

向作者/读者索取更多资源

Separating watershed evapotranspiration into its evaporation and transpiration components is important for calculating the carbon that is assimilated by terrestrial vegetation in carbon cycle studies. The key step in this separation is to quantify the evaporation component. The deuterium excess (d-excess) in meteoric water has been shown to be an important indicator of both the original source of the water vapor and the humidity at the vapor source area. It has also shown promise for use in investigating the evaporation losses. While many studies have used the delta D/delta O-18 method to study watershed evaporation, few have discussed the differences between the delta D/delta O-18 (single isotope system) and d-excess (dual isotope system) methods in quantifying watershed evaporation. Given the complexity of natural watersheds, the Shawan Test Site was established at Puding, China, to study the water cycle in five concrete tanks (simulated watersheds) with different land uses over one hydrologic year. There were no plants in two of the tanks (bare rock and bare soil), which allowed verification of evaporation calculations derived from the d-excess and delta D/delta O-18 methods. delta D or delta O-18 values of precipitation in the rainy season, when most of the groundwater recharge occurs, showed great variability. In contrast, the d-excess of the meteoric waters collected during the same rainy season was much more stable than the delta D or delta O-18 values. We quantified the annual evaporative loss of the five watersheds using both methods. Comparison of the results indicated that the d-excess method is more acceptable than the delta D/delta O-18 method due to the stability of d-excess. Calculated ratios of transpiration to evapotranspiration in three tanks planted with vegetation were 56.8% in cultivated land, 70.9% in shrub land, and 85.9% in grassland, demonstrating that in well vegetated watersheds, this component of the cycle is controlled chiefly by plant transpiration. Land use has an important impact on the hydrologic cycle in a watershed, and the d-excess calculations conducted in this study provide new insights for quantifying components of the cycle, especially in the East Asian monsoon region which has rainfall with a large range in delta D or delta O-18 values. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据