4.7 Article

A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario

出版社

ELSEVIER
DOI: 10.1016/j.future.2018.07.048

关键词

Particle Swarm Optimization; Unmanned Aerial Vehicle network; AANET; Disaster scenario

向作者/读者索取更多资源

UAV networks have been in the spotlight of the research community on the last decade. One of the civil applications in which UAV networks may have more potential is in emergency response operations. Having a UAV network that is able to deploy autonomously and provide communication services in a disaster scenario would be very helpful for both victims and first responders. However, generating exploratory trajectories for these networks is one of the main issues when dealing with complex scenarios. We propose an algorithm based on the well-known Particle Swarm Optimization algorithm, in which the UAV team follows the networking approach known as Delay Tolerant Network. We pursue two main goals, the first is exploring a disaster scenario area, and the second is making the UAVs converge to several victims groups discovered during the exploration phase. We have run extensive simulations for performing a characterization of the proposed algorithm. Both goals of the mission are successfully achieved with the proposed algorithm. Besides, in comparison to an optimal trajectory planning algorithm that sweeps the entire disaster scenario, our algorithm is able to discover faster the 25%, 50% and 75% of the scenario victims and it converges faster. In addition, in terms of connections events between a victim and a UAV, our algorithm shows more frequent connections and less time between consecutive connections. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据