4.6 Review

From single cells to tissue self-organization

期刊

FEBS JOURNAL
卷 286, 期 8, 页码 1495-1513

出版社

WILEY
DOI: 10.1111/febs.14694

关键词

cell-to-cell variability; crossing-scales technologies; development; emergent properties; multicellularity; organoids; pattern formation; regeneration; self-organization; symmetry-breaking

资金

  1. Swiss initiative in Systems Biology, Systemsx.ch (MorphogenetiX)
  2. Swiss National Science Foundation [POOP3_157531, PMPD3_171365]
  3. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme [758617]

向作者/读者索取更多资源

Self-organization is a process by which interacting cells organize and arrange themselves in higher order structures and patterns. To achieve this, cells must have molecular mechanisms to sense their complex local environment and interpret it to respond accordingly. A combination of cell-intrinsic and cell-extrinsic cues are decoded by the single cells dictating their behaviour, their differentiation and symmetry-breaking potential driving development, tissue remodeling and regenerative processes. A unifying property of these self-organized pattern-forming systems is the importance of fluctuations, cell-to-cell variability, or noise. Cell-to-cell variability is an inherent and emergent property of populations of cells that maximize the population performance instead of the individual cell, providing tissues the flexibility to develop and maintain homeostasis in diverse environments. In this review, we will explore the role of self-organization and cell-to-cell variability as fundamental properties of multicellularity-and the requisite of single-cell resolution for its understanding. Moreover, we will analyze how single cells generate emergent multicellular dynamics observed at the tissue level 'travelling' across different scales: spatial, temporal and functional.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据