4.7 Article

MMP14 empowers tumor-initiating breast cancer cells under hypoxic nutrient-depleted conditions

期刊

FASEB JOURNAL
卷 33, 期 3, 页码 4124-4140

出版社

WILEY
DOI: 10.1096/fj.201801127R

关键词

mammary carcinoma; phenotypic plasticity; proteases

资金

  1. Deutsche Forschungsgemeinschaft [SFB850]
  2. Excellence Initiative of the German Federal and State Governments [EXC 294, EXC 306]
  3. German Cancer Consortium Program Oncogenic Pathways [L625, L627]
  4. German Federal Ministry of Education and Research [FKZ 01ZX1409B]
  5. Austrian Science Fund (FWF) [L625] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Tumor-initiating cells (TICs) existing in breast cancer are thought to be involved in initiation, progression, and relapse of tumors. In these processes, the epithelial-to-mesenchymal transition (EMT) and proteases are crucial factors that also dependent on the tumor milieu, including hypoxic nutrient-deprived, as well as normoxic nutrient-rich, environments. Therefore, we investigated EMT and proteases in TICs and their response to different environments by means of a newly generated immortalized TIC (iTIC) line. With the use of primary CD24(+)CD90(+)CD45(-) TICs from the mouse mammary tumor virus-polyoma middle T mouse breast cancer model, iTICs were generated by single cell-initiated sphere and subsequent 2-dimensional monolayer culture. Our data demonstrate the possibility to generate iTICs that are highly tumorigenic in culture and in mouse mammary fat pad. Contrasting environmental conditions provide these cells with a phenotypic and molecular plasticity that has a growth-promoting character in nutrient-rich normoxia and a motile character in nutrient-deprived hypoxia. Expression profiling revealed partial and dynamically changing EMT states, as well as a significantly up-regulated proteolytic signature, including many metalloproteinases, such as matrix metalloproteinase 14 (Mmp14). Inhibitor treatment of metalloproteinases, as well as short hairpin RNA-mediated knockdown of Mmp14 strongly impacted TIC characteristics, including tumor initiation, cell growth, migration, and invasion, especially in starved environments. We conclude that metalloproteinases empower TICs to adapt to changing environments.Hillebrand, L. E., Wickberg, S. M., Gomez-Auli, A., Follo, M., Maurer, J., Busch, H., Boerries, M., Reinheckel, T. MMP14 empowers tumor-initiating breast cancer cells under hypoxic nutrient-depleted conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据