4.5 Article

Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review

期刊

EXPERT OPINION ON THERAPEUTIC PATENTS
卷 28, 期 12, 页码 867-873

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/13543776.2018.1549226

关键词

Hippo pathway; YAP; TEAD; TAZ

资金

  1. Genentech Inc.

向作者/读者索取更多资源

Introduction: The Hippo pathway represents a new and intriguing opportunity for the treatment of cancer. Activation or overexpression of Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ) has been shown to lead to cell transformation and tumor development. To date, no small molecule compounds targeting this pathway have progressed to the clinic, illustrating both its potential and its infancy. Areas covered: The present review seeks to summarize published patent applications from assignee companies that have disclosed direct small molecule inhibitors of the YAP/TAZ-transcriptional enhanced associate domain (TEAD) interaction. Expert opinion: The Hippo pathway, and specifically the YAP/TAZ-TEAD transcriptional complex, has been shown to be a promising target for the treatment of cancer. However, reports in the area of small molecules targeting the YAP/TAZ-TEAD transcriptional activation complex are few and far between, with only two published patent applications that disclose compounds with moderate levels of pathway inhibition. Interestingly, the YAP/TAZ-TEAD complex can be disrupted through two very different mechanisms, one of which is direct inhibition at either the omega-loop or the alpha-helix of the YAP-TEAD binding interface. Both YAP protein segments have been shown to be important to TEAD binding. Alternatively, it has been reported that allosteric inhibition might be accomplished by binding the TEAD palmitoylation pocket, thus disrupting YAP binding and also native protein stabilization. The advantages and liabilities of disrupting the YAP/TAZ-TEAD complex through these two distinct mechanisms have yet to be fully elucidated, and it remains unclear which approach, if any, will generate the first clinical stage inhibitor of the Hippo pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据