4.4 Review

Exact master equation and general non-Markovian dynamics in open quantum systems

期刊

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
卷 227, 期 15-16, 页码 1849-1867

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjst/e2018-800047-4

关键词

-

资金

  1. Ministry of Science and Technology of the Republic of China [MOST 105-2112-M-006-008-MY3]

向作者/读者索取更多资源

Investigations of quantum and mesoscopic thermodynamics force one to answer two fundamental questions associated with the foundations of statistical mechanics: (i) how does macroscopic irreversibility emerge from microscopic reversibility? (ii) how does the system relax in general to thermal equilibrium with its environment? The answers to these questions rely on a deep understanding of nonequilibrium decoherence dynamics of systems interacting with their environments. Decoherence is also a main concern in developing quantum information technology. In the past two decades, many theoretical and experimental investigations have devoted to this topic, most of these investigations take the Markov (memory-less) approximation. These investigations have provided a partial understanding to several fundamental issues, such as quantum measurement and the quantum-to-classical transition, etc. However, experimental implementations of nanoscale solid-state quantum information processing makes strong non-Markovian memory effects unavoidable, thus rendering their study a pressing and vital issue. Through the rigorous derivation of the exact master equation and a systematical exploration of various non-Markovian processes for a large class of open quantum systems, we find that decoherence manifests unexpected complexities. We demonstrate these general non-Markovian dynamics manifested in different open quantum systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据