4.3 Article

Effective temperature of active fluids and sheared soft glassy materials

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 41, 期 10, 页码 -

出版社

SPRINGER
DOI: 10.1140/epje/i2018-11731-7

关键词

-

资金

  1. Koshland Foundation

向作者/读者索取更多资源

The dynamics within active fluids, driven by internal activity of the self-propelled particles, is a subject of intense study in non-equilibrium physics. These systems have been explored using simulations, where the motion of a passive tracer particle is followed. Similar studies have been carried out for a soft glassy material that is driven by shearing its boundaries. In both types of systems the non-equilibrium motion have been quantified by defining a set of effective temperatures, using both the tracer particle kinetic energy and the fluctuation-dissipation relation. We demonstrate that these effective temperatures extracted from the many-body simulations fit analytical expressions that are obtained for a single active particle inside a visco-elastic fluid. This result provides testable predictions and suggests a unified description for the dynamics inside active systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据