4.7 Article

Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 26, 期 3, 页码 2569-2579

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-018-3792-2

关键词

Ammonia volatilization; Methane and nitrous oxide emission; Slow/controlled-release urea; Grain yield; Double rice cropping system

资金

  1. National Key Research and Development Program of China [2017YFD0200108]
  2. Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture, China [201303103]
  3. Fundamental Research Funds for the Central Universities [2662017JC010]

向作者/读者索取更多资源

Ammonia (NH3) volatilization and greenhouse gas (GHG) emission from rice (Oryza sativa L.) fields contaminate the atmospheric environment and lead to global warming. Field trials (2013-2015) were conducted to estimate the influences of different types of fertilization practices on grain yield, NH3 volatilization, and methane (CH4) and nitrous oxide (N2O) emissions in a double rice cropping system in Central China. Results showed that grain yields of rice were improved significantly by using slow/controlled-release urea (S/C-RU). Compared with farmers' fertilizer practice (FFP) treatment, average annual grain yield with application of polymer-coated urea (CRU), nitrapyrin-treated urea (CP), and urea with effective microorganism (EM) treatments was increased by 18.0%, 16.2%, and 15.4%, respectively. However, the effects on NH3 volatilization and CH4 and N2O emissions differed in diverse S/C-RU. Compared with that of the FFP treatment, the annual NH3 volatilization, CH4 emission, and N2O emissions of the CRU treatment were decreased by 64.8%, 19.7%, and 35.2%, respectively; the annual CH4 and N2O emissions of the CP treatment were reduced by 33.7% and 40.3%, respectively, while the NH3 volatilization was increased by 18.5%; the annual NH3 and N2O emissions of the EM treatment were reduced by 6.3% and 28.7%, while the CH4 emission was improved by 4.3%. Overall, CP showed the best emission reduction with a decrement of 34.3% in global warming potential (GWP) and 44.4% in the greenhouse gas intensity (GHGI), followed by CRU treatment with a decrement of 21.1% in GWP and 31.7% in GHGI, compared with that of the FFP treatment. Hence, it is suggested that polymer-coated urea can be a feasible way of mitigating NH3 volatilization and CH4 and N2O emission from rice fields while maintaining or increasing the grain yield in Chinese, the double rice cropping system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据