4.7 Article

Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio)

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 26, 期 5, 页码 4913-4923

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-018-3957-z

关键词

Cyproconazole; Zebrafish embryos; Developmental defects; Malformations; Oxidative respiration; Locomotor activity

资金

  1. University of Florida
  2. College of Veterinary Medicine
  3. China Scholarship Council (CSC) [201706350062]

向作者/读者索取更多资源

Cyproconazole is a triazole fungicide used to protect a diverse range of fruits, vegetables, and grain crops. As such, it has the potential to enter aquatic environments and affect non-target organisms. The objective of this study was to assess the acute toxicity of the triazole fungicide cyproconazole to zebrafish embryos by assessing mortality, developmental defects, morphological abnormality, oxidative respiration, and locomotor activity following a 96-h exposure. Zebrafish embryos at 6-h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), or one dose of 10, 25, 50, 100, 250, and 500 mu M cyproconazole for 96 h. Data indicated that cyproconazole exhibited low toxicity to zebrafish embryos, with a 96-h LC50 value of 90.6 mu M ( 26.4 mg/L). Zebrafish embryos/larvae displayed a significant decrease in spontaneous movement, hatching rate, and heartbeats/20 s with 50, 100, and 250 mu M cyproconazole exposure. Malformations (i.e., pericardial edema, yolk sac edema, tail deformation, and spine deformation) were also detected in zebrafish exposed to ae 50 mu M cyproconazole, with significant increases in cumulative deformity rate at 48, 72, and 96 hpf. In addition, a 20-30% decrease in basal and oligomycin-induced ATP respiration was observed after 24-h exposure to 500 mu M cyproconazole in embryos. To determine if cyproconazole affected locomotor activity, a dark photokinesis assay was conducted in larvae following 7-day exposure to 1, 10, and 25 mu M cyproconazole in two independent trials. Activity in the dark period was decreased for zebrafish exposed to 25 mu M cyproconazole in the first trial, and hypoactivity was also observed in zebrafish exposed to 1 mu M cyproconazole in a second trial, suggesting that cyproconazole can affect locomotor activity. These data improve understanding of the toxicity of cyproconazole in developing zebrafish and contribute to environmental risk assessments for the triazole fungicides on aquatic organisms. We report that, based on the overall endpoints assessed, cyproconazole exhibits low risk for developing fish embryos, as many effects were observed above environmentally-relevant levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据