4.8 Article

Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 1, 页码 88-97

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b03910

关键词

-

资金

  1. Swiss National Science Foundation, Mathematics, Natural Sciences, and Engineering (Division II) [200021L_150150]
  2. Austrian Science Fund (FWF) [I 1528-N19]
  3. Swiss National Science Foundation (SNF) [200021L_150150] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Dissolution of iron(III)phases is a key process in soils, surface waters, and the ocean. Previous studies found that traces of Fe(II) can greatly increase ligand controlled dissolution rates at acidic pH, but the extent that this also occurs at circumneutral pH and what mechanisms are involved are not known. We addressed these questions with infrared spectroscopy and Fe-57 isotope exchange experiments with lepidocrocite (L-P) and 50 mu M ethylenediaminetetraacetate (EDTA) at pH 6 and 7. Addition of 0.2-10 mu M Fe(II) led to an acceleration of the dissolution rates by factors of 7-31. Similar effects were observed after irradiation with 365 nm UV light. The catalytic effect persisted under anoxic conditions, but decreased as soon as air or phenanthroline was introduced. Isotope exchange experiments showed that added Fe-57 remained in solution, or quickly reappeared in solution when EDTA was added after Fe-57(II), suggesting that catalyzed dissolution occurred at or near the site of Fe-57 incorporation at the mineral surface. Infrared spectra indicated no change in the bulk, but changes in the spectra of adsorbed EDTA after addition of Fe(II) were observed. A kinetic model shows that the catalytic effect can be explained by electron transfer to surface Fe(III) sites and rapid detachment of Fe(III)EDTA due to the weaker bonds to reduced sites. We conclude that the catalytic effect of Fe(II) on dissolution of Fe(III)(hydr)oxides is likely important under circumneutral anoxic conditions and in sunlit environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据