4.4 Article

E-Waste Based V2O5/RGO/Pt Nanocomposite for Photocatalytic Degradation of Oxytetracycline

期刊

出版社

WILEY
DOI: 10.1002/ep.13123

关键词

E-waste; nanocomposite; oxytetracycline; photocatalytic degradation; RGO; vanadium pentoxide

资金

  1. BK21 plus program through the National Research Foundation (NRF) - Ministry of Education of Korea

向作者/读者索取更多资源

The increasing prevalence of antibiotics in the environment has promoted the development of antibiotic resistant microorganisms, and novel approaches are needed to effectively remove antibiotics from water and mitigate this worldwide problem. A reduced graphene oxide-V2O5 (RGOV) nanocomposite was synthesized and used for photocatalytic degradation of the antibiotic oxytetracycline (OTC) in aqueous solution. The Sol-Gel method was employed for V2O5 synthesis from e-waste-based vanadium nitrate, and a one pot solvothermal method was used to synthesize RGOV. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM) with energy dispersive analysis of X-rays (EDAX) confirmed V-O-C bonds on the surface of the RGOV nanocomposites. A decrease in the band gap of V2O5 from 2.21 to 2.13 eV was supported by diffuse reflectance ultraviolet-visible spectrophotometry. OTC adsorption onto the nanocomposite increased with an increase in RGO concentration and saturated at 17% for RGOV with 30% graphene oxide. The composite degraded 90% of the OTC present in aqueous solution (50 mg/L). Platinum (1%) doping further increased OTC degradation by the nanocomposite to 98.7%. Optimum conditions for maximum OTC degradation are (1) an initial OTC concentration of 50 mg/L, (2) a RGOV nanocomposite dose of 0.5 g/L, and (3) a 40 min incubation time. Our results support the potential use of RGOV nanocomposite for OTC photodegradation. (c) 2018 American Institute of Chemical Engineers Environ Prog, 38:e13123, 2019

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据