4.6 Article

Effect of Zr Addition on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Synthesized by Spark Plasma Sintering

期刊

ENTROPY
卷 20, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/e20110810

关键词

high-entropy alloy; mechanical alloying; spark plasma sintering; nanoprecipitates; mechanical properties

资金

  1. National Key Project of Research and Development Program of China [2016YFB1100202]

向作者/读者索取更多资源

As a classic high-entropy alloy system, CoCrFeNiMn is widely investigated. In the present work, we used ZrH2 powders and atomized CoCrFeNiMn powders as raw materials to prepare CoCrFeNiMnZrx (x = 0, 0.2, 0.5, 0.8, 1.0) alloys by mechanical alloying (MA), followed by spark plasma sintering (SPS). During the MA process, a small amount of Zr (x 0.5) can be completely dissolved into CoCrFeNiMn matrix, when the Zr content is above 0.5, the ZrH2 is excessive. After SPS, CoCrFeNiMn alloy is still as single face-centered cubic (FCC) solid solution, and CoCrFeNiMnZrx (x 0.2) alloys have two distinct microstructural domains, one is a single FCC phase without Zr, the other is a Zr-rich microstructure composed of FCC phase, B2 phase, Zr2Ni7, and sigma phase. The multi-phase microstructures can be attributed to the large lattice strain and negative enthalpy of mixing, caused by the addition of Zr. It is worth noting that two types of nanoprecipitates (body-centered cubic (BCC) phase and Zr2Ni7) are precipitated in the Zr-rich region. These can significantly increase the yield strength of the alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据