4.6 Article

Heat Transfer and Flow Structures of Laminar Confined Slot Impingement Jet with Power-Law Non-Newtonian Fluid

期刊

ENTROPY
卷 20, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/e20100800

关键词

laminar impinging slot jet; power-law index; consistency index; Power-Law Non-Newtonian fluid

资金

  1. National Natural Science Foundation of China [51765033]

向作者/读者索取更多资源

Heat transfer performances and flow structures of laminar impinging slot jets with power-law non-Newtonian fluids and corresponding typical industrial fluids (Carboxyl Methyl Cellulose (CMC) solutions and Xanthangum (XG) solutions) have been studied in this work. Investigations are performed for Reynolds number Re less than 200, power-law index n ranging from 0.5 to 1.5 and consistency index K varying from 0.001 to 0.5 to explore heat transfer and flow structure of shear-thinning fluid and shear-thickening fluid. Results indicate that with the increase of n, K for a given Re, wall Nusselt number increases mainly attributing to the increase of inlet velocity U. For a given inlet velocity, wall Nusselt number decreases with the increase of n and K, which mainly attributes to the increase of apparent viscosity and the reduction of momentum diffusion. For the same Re, U and Pr, wall Nusselt number decreases with the increase of n. Among the study of industrial power-law shear-thinning fluid, CMC solution with 100 ppm shows the best heat transfer performance at a given velocity. Moreover, new correlation of Nusselt number about industrial fluid is proposed. In general, for the heat transfer of laminar confined impinging jet, it is best to use the working fluid with low viscosity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据