4.6 Article

Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger

出版社

HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENG
DOI: 10.1080/19942060.2018.1518272

关键词

Thermosyphon; nanofluid; heat exchanger; thermal conductivity

向作者/读者索取更多资源

Thermosyphons have high effective thermal conductivity and are applicable for different heat transfer purposes including cooling devices and heat exchangers. In the present study, thermal performance of a thermosyphon is experimentally investigated by using Ni/Glycerol-water nanofluid in three concentrations including 0.416, 0.625 and 1.25 g/lit. Experimental results revealed that using the nanofluid with 0.625 g/lit concentration leads to lowest thermal resistances. Afterwards, a thermosyphon-based heat exchanger is designed and numerically investigated to compare its performance with copper heat exchanger. Since the effective thermal conductivity of thermosyphon depends on temperature difference between condenser and evaporator, a novel approach is applied to achieve precise modeling. Effects of mass flow rates of cold and streams and inlet temperature of hot stream on heat transfer rate are evaluated. Results revealed that using thermosyphon instead of copper tubes with the same dimensions results in more than 100% improvement in heat transfer capacity. Moreover, it is concluded that increase in the mass flow rates of the streams and inlet temperature of hot stream lead to increase in heat transfer rate. A 3D graph is represented to evaluate the influences of hot stream temperature and mass flow rate on the heat transfer rate of thermosyphon-based heat exchanger.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据