4.7 Article

Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 180, 期 -, 页码 72-82

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2018.10.098

关键词

Graphene nanoplatelets nanofluid; Spiral heat exchanger; Effectiveness; Heat transfer; Pressure drop; 3D numerical simulation

向作者/读者索取更多资源

In this study, thermal and hydraulic attributes of an ecofriendly graphene nanofluid flowing within a countercurrent spiral heat exchanger are evaluated. The cold water flows in one side while the hot nanofluid or hot base fluid moves in the other side of heat exchanger. The heat transfer rate and overall heat transfer coefficient enhance with increasing either Reynolds number or concentration. The effect of adding nanoparticles becomes more important at higher Reynolds numbers. At great Reynolds number, the higher heat transfer occurs in the end sections of the heat exchanger whereas at low Reynolds number, the chief heat exchange happens at the initial sections. The results show that the value of effectiveness is much great (higher than 0.85) in all cases under investigation. Moreover, the effectiveness and number of transfer units decrease by increasing the Reynolds number. The pressure drop intensifies with the Reynolds number increment, and the nanofluid demonstrates a greater pressure drop than the base fluid especially at higher Reynolds numbers. Meanwhile, the cold fluid demonstrates a higher pressure drop compared with the hot fluid due to the greater viscosity. The performance index, i.e. the ratio of heat transfer rate to pressure drop, enhances with increase in either Reynolds number or concentration, which is a promising result. Thereby, the performance index for the nanofluid increases almost 142% by increasing the Reynolds number from 1000 to 3000.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据