4.7 Article

Asphaltene-Derived Activated Carbon and Carbon Nanotube Membranes for CO2 Separation

期刊

ENERGY & FUELS
卷 32, 期 11, 页码 11718-11730

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.8b02913

关键词

-

资金

  1. Abu Dhabi National Oil Company RD division [RDProj.018-GP]
  2. Gas Research Center [GRC16002]

向作者/读者索取更多资源

Due to large energy requirements of the traditional gas separation processes, novel and less energy-intensive technologies, such as adsorption- and membrane-based ones, are anticipated to play major role in future industrial separations. Thus, finding new means for economical fabrication of materials related to these processes is of significant importance to facilitate their implementation in large-scale operations. In this work, we synthesized high-quality activated porous carbons (AC) and carbon nanotube (CNT) membranes using asphaltene, an abundant waste of the petroleum industry. The resulting materials were tested for CO2 separation in adsorption and membrane modes. Among the various porous carbons produced, AC from raw asphaltene reached a CO2 sorption capacity of 7.56 mmol/g at 4 bar and 25 degrees C with a relatively low heat of adsorption (up to 23 kJ/mol) implying low energy requirement for regeneration. The versatility of the asphaltene precursors in the formation of carbon nanomaterials was also demonstrated by growing, for the first time, CNT membranes via template-based, catalyst-free carbonization of asphaltene inside the pores of anodized alumina. The resulting CNT membranes attained a promising separation performance with permeability ratios exceeding the respective Knudsen values for H-2/CO2, N-2/CO2, N-2/CH4, and H-2/CH4 gas pairs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据