4.7 Article

Simulation of Organic Rankine Cycle - Quasi-steady state vs dynamic approach for optimal economic performance

期刊

ENERGY
卷 167, 期 -, 页码 619-640

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.10.166

关键词

Organic Rankine cycle; Waste heat recovery; Quasi-steady state; Dynamic; Simulations

资金

  1. Munich School of Engineering of Technical University of Munich
  2. Nanyang Technological University of Singapore

向作者/读者索取更多资源

Computer-based simulations of Organic Rankine Cycles (ORC) have been extensively used in the last two decades to predict the behaviour of existing plants or already in the design phase. For time-varying heat sources, researchers typically rely on either quasi-steady state or dynamic simulations. In this work, the two approaches are compared and the trade-off between them is analysed, taking as benchmark waste heat recovery with ORC from a billet reheating furnace. The system is firstly optimized in MATLAB (R) using a quasi-steady state approach. The results are then compared with a corresponding dynamic simulation in Dymola. In the case of waste heat from billet reheat furnace, the quasi-steady state approach can successfully capture the fluctuations in waste heat. For heat source ramps from 110% to 40% the nominal value in 30 s, dynamic effects lead to 1.1% discrepancies in ORC net power. The results highlight the validity of the quasi-steady state approach for techno-economic optimization of ORC for industrial waste heat and provide a valuable guideline for developers, companies and researchers when choosing the most suitable tool for their analysis, helping them save time and costs to find the most appropriate approach. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据