4.6 Article

N-doped carbon-coated Tin sulfide/graphene nanocomposite for enhanced lithium storage

期刊

ELECTROCHIMICA ACTA
卷 300, 期 -, 页码 131-137

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.01.104

关键词

Nanosheet; Structure design; Tin sulfide; Graphene; Carbon

资金

  1. National Natural Science Foundation of China [51602167, 21601098]
  2. Shandong Provincial Science Foundation [ZR2016EMB07, ZR2017JL021]
  3. Key Research and Development Program [2018GGX102033]
  4. Qingdao Applied Fundamental Research Project [16-5-1-92-jch, 17-1-1-81-jch]
  5. Distinguished Taishan Scholar project

向作者/读者索取更多资源

Tin sulfides have attracted significant interests as the anode materials of lithium-ion batteries (LIBs) due to their high capacity and layered structure. However, metal sulfides suffer from a fast capacity decay caused by the large volume change during cycling, and poor conductivity. In this work, we report on a rational design of lamellar nanostructure consisting of N-doped carbon layers, graphene nanosheets, and SnS nanoparticles. The SnS/graphene nanosheets with and without N-carbon coating have been investigated as the anode for LIBs to study the structure effect. It is found that N-carbon/SnS/graphene nanosheets deliver a high reversible capacity of 840 mA h g(-1) after 150 cycles at a current density of 100 mA g(-1) and higher rate properties in comparison to SnS/graphene. The improved electrochemical performances are attributed to the special lamellar structure with a combined synergic effect derived from the N-carbon coating layers and graphene nanosheets, which conduce to a faster lithium diffusion dynamics in the composite nanosheets, which has been analyzed by electrochemical impedance spectroscopy. This work propose an efficient pathway to manipulate metal sulfides based nanomaterials for use as anodes in LIBs with enhanced lithium storage performances. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据