4.6 Article

Electrochemical self-cleaning anodic surfaces for biofouling control during water treatment

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 96, 期 -, 页码 83-87

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2018.10.002

关键词

Boron-doped diamond; Electrochemical advanced oxidation; Water treatment; Self-cleaning electrode; Biofilms

资金

  1. Nano-Enabled Water Treatment Technologies Nanosystems Engineering Research Center, National Science Foundation [EEC-1449500]

向作者/读者索取更多资源

Biofilm formation and growth on submerged surfaces causes numerous operational problems, ranging from hindering diffusion of pollutants to electrode surfaces during electrochemical water treatment to harboring pathogens in indoor plumbing. This work evaluates electrochemical biofilm dispersion kinetics from boron-doped diamond (BDD) surfaces in situ using optical coherence tomography microscopy to track the volume of biofilm (biovolume) on the electrode. After starting with a 75 pm thick biofilm, applying 50 mA cm(-2) results in near complete biofilm removal after 60 min, with a pseudo first-order biovolume removal rate of 0.023 min(-1); higher applied currents had negligible additional benefits. Thus, it appears plausible to attain biofouling mitigation through electrochemical self-cleaning of BDD electrodes, potentially via the following two-step process: 1) hydroxyl radical production on the electrode surface which oxidizes polysaccharides or other cellular materials that attach bacteria to surface, followed by 2) gas evolution on the electrode surface (beneath the biofilm), which pushes and sloughs off the biofilm. This novel approach to biofouling management can find applications in electrochemical water treatment and other important surfaces (e.g., electrodes, membrane spacers, heat exchange surfaces, interior pipe surfaces, etc.) in water treatment systems where biofilms develop and harbor microbial pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据