4.4 Article

Nuclear FGFR2 regulates musculoskeletal integration within the developing limb

期刊

DEVELOPMENTAL DYNAMICS
卷 248, 期 3, 页码 233-246

出版社

WILEY
DOI: 10.1002/dvdy.9

关键词

limb development; bent bone dysplasia syndrome; connective tissue

资金

  1. March of Dimes Foundation [6-FY15-233]
  2. National Institute of Child Health and Human Development [5T32HD060549-02]
  3. National Institute of Dental and Craniofacial Research [R01DE025222, R01DE025222-01S1, T90DE021982]

向作者/读者索取更多资源

Background Bent bone dysplasia syndrome (BBDS), a congenital skeletal disorder caused by dominant mutations in fibroblast growth factor receptor 2 (FGFR2), is characterized by bowed long bones within the limbs. We previously showed that the FGFR2 mutations in BBDS enhance nuclear and nucleolar localization of the receptor; however, exactly how shifts in subcellular distribution of FGFR2 affect limb development remained unknown. Results Targeted expression of the BBDS mutations in the lateral plate mesoderm of the developing chick induced angulated hindlimbs, a hallmark feature of the disease. Whole-mount analysis of the underlying skeleton revealed bent long bones with shortened bone collars and, in severe cases, dysmorphic epiphyses. Epiphyseal changes were also correlated with joint dislocations and contractures. Histological analysis revealed that bent long bones and joint defects were closely associated with irregularities in skeletal muscle patterning and tendon-to-bone attachment. The spectrum of limb phenotypes induced by the BBDS mutations were recapitulated by targeted expression of wild-type FGFR2 appended with nuclear and nucleolar localization signals. Conclusions Our results indicate that the bent long bones in BBDS arise from disruptions in musculoskeletal integration and that increased nuclear and nucleolar localization of FGFR2 plays a mechanistic role in the disease phenotype. 248:233-246, 2019. (c) 2018 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据