4.7 Article

Multiscale topology optimization using neural network surrogate models

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.09.007

关键词

Topology optimization; Multiscale analysis; Neural networks; Material models

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

We are concerned with optimization of macroscale elastic structures that are designed utilizing spatially varying microscale metamaterials. The macroscale optimization is accomplished using gradient-based nonlinear topological optimization. But instead of using density as the optimization decision variable, the decision variables are the multiple parameters that define the local microscale metamaterial. This is accomplished using single layer feedforward Gaussian basis function networks as a surrogate models of the elastic response of the microscale metamaterial. The surrogate models are trained using highly resolved continuum finite element simulations of the microscale metamaterials and hence are significantly more accurate than analytical models e.g. classical beam theory. Because the derivative of the surrogate model is important for sensitivity analysis of the macroscale topology optimization, a neural network training procedure based on the Sobolev norm is described. Since the SIMP method is not appropriate for spatially varying lattices, an alternative method is developed to enable creation of void regions. The efficacy of this approach is demonstrated via several examples in which the optimal graded metamaterial outperforms a traditional solid structure. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据