4.4 Article Proceedings Paper

Chemiluminescence of Burner-Stabilized Premixed Laminar Flames

期刊

COMBUSTION SCIENCE AND TECHNOLOGY
卷 191, 期 1, 页码 18-42

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00102202.2018.1558391

关键词

Flame chemiluminescence; non-adiabatic combustion; preheating; heat losses; operating point control

资金

  1. FUI (Fonds Unique Interministeriel)

向作者/读者索取更多资源

The OH*, CH* and CO chemiluminescence signals of methane/air premixed laminar flames stabilized over a nonadiabatic porous plug burner are compared to the signals measured from a nearly adiabatic conical flame in a series of experiments. The impact of reactant stream temperature is also characterized. A numerical study based on 1-D flame models then follows to support the experimental results. It is found both in experiments and in simulations that the linear relationship between the mixture flowrate and the chemiluminescence intensities is no longer valid when flames are closely attached to the burner surface due to the heat transfer between the flame and the burner. The transition between the linear and the nonlinear regimes is identified as the gas flow velocity drops below the adiabatic laminar burning velocity calculated at the bulk temperature of the flow leaving the burner. When the mass flowrate is kept constant, preheating of the reactant stream increases the chemiluminescence intensity for a freely propagating flame, but has almost no impact for a burner-stabilized flame. It is finally found that the OH* and CH* chemiluminescence intensities correlate with the burnt gas temperature for the adiabatic but also the nonadiabatic flames. The underlying physical mechanisms are discussed. Finally, the evolution of the CH*/OH* ratio with the inlet gas velocity is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据