4.7 Article

The effect of butanol isomers on the formation of carbon particulate matter in fuel-rich premixed ethylene flames

期刊

COMBUSTION AND FLAME
卷 199, 期 -, 页码 122-130

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2018.10.025

关键词

Butanol; Biofuels; Soot; Nanoparticles; Premixed flames

资金

  1. European Union's Horizon 2020 research and innovation program [654623]
  2. H2020 Societal Challenges Programme [654623] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

The effect of the butanol isomers on carbon particulate matter formation was studied by substituting up to 20% of the total carbon of ethylene, fed to premixed flames with different equivalence ratios, with the four butanol isomers. Soot and condensed-phase nanostructures were tracked by means of particle size distribution (PSD) measurements and laser induced emission spectroscopy, namely fluorescence and incandescence. Butanol isomers, especially t-butanol, significantly reduced the total amount and the size of the soot particles, whereas a negligible effect was detected on condensed-phase nanostructures. PSDs were measured along with the aromaticity and functionalities of the carbon particulate matter thermophoretically sampled in the highest equivalence ratio condition. No significant differences were found among the different butanol isomers neither in the soot aggregate size, as measured by size exclusion chromatography, nor in the aromaticity, as evaluated by Raman and UV-vis spectroscopy, of the particulate matter. Conversely, FTIR analysis showed that carbon particulate matter produced from 1-butanol and t-butanol-doped flames contained larger amounts of oxygen in form of C=O, C-O-C and OH functionalities. However, most of the differences in the oxygen functionalities disappeared after dichloromethane (DCM) treatment, suggesting that these oxygenated moieties belong to the condensed-phase nanostructures, soluble in DCM, rather than to soot particles. (C) 2018 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据