4.7 Article

The bio-interface between functionalized Au NR@GO nanoplatforms with protein corona and their impact on delivery and release system

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 173, 期 -, 页码 891-898

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2018.10.042

关键词

Gold; Nanorod; Modified nanoplatforms; Poly L-arginine; Protein corona; Gene delivery

资金

  1. Nanotechnology Research Centre of Tehran University of Medical Sciences

向作者/读者索取更多资源

Interaction of nanoplatforms with biomolecules in biological fluids alters nanoplatforms approach to target tissue and deliver their cargo. Here in, three nanoplatforms were utilized as a carrier to detect the effects of subsequent biomolecules on gene delivery using NIR thermal therapy. Nanoplatforms included; graphene oxide coated gold nanorods (NR@GO), PEGylated NR@GO (NR@GO-PEG) and poly L arginine functionalized NR@GO-PEG (NR@GO-PEG-PLArg). Results indicated that incubation of nanoplatforrns in different concentrations of human plasma induced the evolution of layer of proteins (corona) with different thickness on the surface of nanoplatforms. Protein corona decreased the surface charge and optical properties of nanoplatforms. Corona subunits of ITIH, HAS and APOs protein family were extracted from NR@GO-PEG-PLArg surface that play a major role in cellular internalization of nanoplatforms. Moreover, NR@GO-PEG-PLArg remarkably targeted the cancer cells due to uncovered long linear chains of targeting agent (PLArg). The process of gene release and activating apoptotic pathway were enhanced by NIR thermal therapy, which could disrupt the electrostatic interactions and release the protein corona and genes from the surface of nanoplatforms. In conclusion, modification of nanoplatforms with targeting agents could alter the composition of corona toward well interaction with cell and deliver the therapeutic agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据