4.7 Article

Multiplex Droplet Digital PCR Method Applicable to Newborn Screening, Carrier Status, and Assessment of Spinal Muscular Atrophy

期刊

CLINICAL CHEMISTRY
卷 64, 期 12, 页码 1753-1761

出版社

AMER ASSOC CLINICAL CHEMISTRY
DOI: 10.1373/clinchem.2018.293712

关键词

-

资金

  1. Mayo Clinic's Department of Laboratory Medicine and Pathology

向作者/读者索取更多资源

BACKGROUND: Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder with neuronal degeneration leading to muscular atrophy and respiratory failure. SMA is frequently caused by homozygous deletions that include exon 7 of the survival motor neuron gene SMN1, and its clinical course is influenced by the copy number of a nearby 5q SMN1 paralog, SMN2. Multiple ligation probe amplification (MLPA) and real-time quantitative PCR (qPCR) can detect SMN1 deletions. Yet, qPCR needs normalization or standard curves, and MLPA demands DNA concentrations above those obtainable from dried blood spots (DBSs). We developed a multiplex, droplet digital PCR (ddPCR) method for the simultaneous detection of SMN1 deletions and SMN2 copy number variation in DBS and other tissues. An SMN1 Sanger sequencing process for DBS was also developed. METHODS: SMN1, SMN2, and RPP30 concentrations were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. A total of 1530 DBSs and 12 SMA patients were tested. RESULTS: Population studies confirmed 1 to 5 SMN1 exon 7 copies detected in unaffected specimens, whereas patients with SMA revealed 0 SMN1 copies. Intraassay and interassay imprecisions were <7.1% CV for individuals with >= 1 SMN1 copies. Testing 12 SMA-positive samples resulted in 100% sensitivity and specificity. CONCLUSIONS: This ddPCR method is sensitive, specific, and applicable to newborn screening and carrier status determination for SMA. It can also be incorporated with a parallel ddPCR T-cell excision circles assay for severe combined immunodeficiencies. (c) 2018 American Association for Clinical Chemistry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据