4.6 Article

Tree rings reveal hydroclimatic fingerprints of the Pacific Decadal Oscillation on the Tibetan Plateau

期刊

CLIMATE DYNAMICS
卷 53, 期 1-2, 页码 1023-1037

出版社

SPRINGER
DOI: 10.1007/s00382-019-04629-z

关键词

Climate dynamics; Dendroclimatology; Drought extremes; Hydroclimate; Proxy reconstruction; Relative humidity; Tree rings

资金

  1. Natural Science Foundation of China [31330015, 41771060]
  2. China Scholarship Council [201770490418]

向作者/读者索取更多资源

Predicting hydroclimatic changes on the Tibetan Plateau (TP) is crucial for managing water and ecosystems for the well-being of millions of people. Our understanding of the synoptic conditions on the TP is, however, still limited due to the paucity of meteorological measurements and proxy-based, high-resolution climate reconstructions. Here, we use state-of-the-art dendroclimatological techniques to investigate the paleoclimatic potential of drought-sensitive Picea likiangensis var. balfouriana forests between 4000 and 4500m asl on the southeastern TP (SETP). The newly developed tree-ring width chronology correlates significantly with yearly changes in regional relative air humidity (RH) (r=0.85, P<0.001, 1978-2011). A new 407-year-long reconstruction of RH over the hydrological year from previous year August to July of the year of ring formation shows that, despite the generally humid conditions, four of the ten driest years are observed in the twentieth century with 1983 having been the driest. On the other hand, seven out of the ten most humid years were found in the eighteenth century. Our reconstruction reveals that the Pacific Decadal Oscillation (PDO) is the dominant climate driver at multi-decadal scales, but the relationships are not stable over time, with unknown underlying mechanisms. Although our study demonstrates the importance of the PDO for hydroclimate projections on the TP, caution is advised when considering only its most recent fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据